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A NOTE ON EXTENDED QJASI-LIKELIlOOD

M. Davidian
R.J. Carroll

Department of Statistics
University of North Carolina at Chapel Hill

321 Phillips Hall 039 A
Chapel Hill, North Carolina. USA

27514

We study the method of Extended Quasi-Likelihood estimation of a

variance function. This method is shown to be closely related to the

method of pseudo-likelihood estimation as in Carroll & Ruppert (1982).

Keywords: EXPONENTIAL FAMILY; HETEROSCEDASTIC REGRESSION MODEL; INFERENCE

FOR VARIANCE PARAMETERS; PSEUDO-LIKELIHOOD ESTIMATION; VARIANCE

FUNCTION ESTIMATION.
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1. INTRODCrION

Consider the following mean-variance model for observable data y:

E(yi) = = Ai,(P) = f(xi.) ; var(yi) = a 2g (i' zii ) "  (1.1)

Here, yi is the ith response variable of N independent observations,

(x .z.) are associated vectors of covariates, f is the regression function,

/3 is a p-vector of regression parameters, a is a scale parameter, and g is

the variance function with variance parameter 0 (r x 1). For example, the

variance may be modeled as proportional to an unknown power of the mean:
-4,

0 0
g(wi zi. ) Ail 11 > 0. (1.2)

Special cases of (1.1) are used in applications such as radioimmunoassay,

econometrics, and chemical kinetics. Model (1.1) includes the class of

generalized linear models, see McCullagh & Nelder (1983).

A usual aim is the estimation of P, with estimation of the variance

function parameters as an adjunct. However, as discussed by Davidian &

Carroll (1987) and Carroll. Davidian & Smith (unpublished). estimation of

.'. the variance function, in particular the parameter 0. is an important

problem both for estimation of 1 and in its own right.

Most methods for estimating 0 are "regression" methods based on

generalized least squares. In these techniques. 0 and a are estimated by a

weighted regression of some function of the absolute residuals from a fit

on their expectations. For example, in location-scale problems squared

2
residuals have approximate mean proportional to g (ilzi.e) and variance

- 4proportional to g (Pizi.,). Thus an estimate of 0 can be obtained by a

0a

Wd -V • C.
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generalized least squares regression of squared residuals on a g Oi.zi.)

with variance function g lilzi.O),) where wi = f(xi.p3). A related method

is the pseudo-likelihood approach of Carroll & Ruppert (1982). In this

method, one pretends 3 = * and then estimates (o,G) by normal theory

maximum likelihood, maximizing epL(I,.Ga), where

N
e0PL(I 3.e'o) = -N log a I log [g{.i1(13)-zi.0}]

i=1

2-1 N 2 2
- (2a 1 {yi - f(x.'P)}2/g(Wi(p).zi'O} (1.3)_-.%:i=l

NThis process may be iterated with a generalized least squares routine for

P3. The pseudo-likelihood method is asymptotically equivalent to weighted

regression on squared residuals, and full iteration of such a regression

yields the pseudo-likelihood estimate. Both methods can be modified to

account for loss of degrees of freedom for preliminary estimation of 13 as

in Harville (1977); for a discussion and a review of many common methods

for estimation of 0. see Davidian & Carroll (1987).

Pseudo-likelihood and weighted squared residual estimation are based

upon the method of moments. Nelder & Pregibon (1987) instead attempt to

define a family of distributions with mean and variance functions given by

(1.1), this class including as special cases skewed distributions such as

-._N . the Poisson or gamma. Their extended quasi-likelihood is

*2 N2 2
.'.:.. tQL(0,OG) = (-1/2) - [log ,i) g (y}.z 0)) + D(yi.J~i(1) ,  ,

i=l

where (1.4)

D(y,w,q) = -2 f y w dw.
Sg2 (wz.e)

.'..y

%. . -. . .--.". .. . ~. .
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The function e is sometimes but not always an exact log-likelihood.
QL

Under (1.2). if 0 = 0. tQL is the normal log-likelihood; for 6 = 1.5. that

of the inverse Gaussian. For 6 = .5. a = 1. eQL differs from the Poisson

log-likelihood by replacing yi! by its Stirling approximation; for 6 = 1,

e , e differs from the gamma log-likelihood by a factor depending on a. One

motivation for (1.4) is the Edgeworth expansion of Barndorff-Nielsen and

Cox (1979) or the related saddlepoint approximation of Daniels (1954).

which yield an expansion for the density of the mean of m random variables

from a one parameter exponential family as m -+ -. The leading term of the

expansion at m = 1 is the extended quasi-likelihood summand. See Efron

(1986) for a related formulation. Note that the form of PQL may be

unsatisfactory in situations for which g(y,z,) = 0 for y = 0. In this case

Nelder & Pregibon suggest replacing g(y,z,6) by g(y+c,z,O) for some c; we

use this adjustment where applicable in our discussion.

An additional reason for considering approximate likelihoods for a

mean-variance model is that linear exponential families with given

mean-variance relationship do not always exist. For example. Bar-Lev &

Enis (1986) have shown that if the distribution of yi is an exponential

family with variance function (1.2). it is necessary that 6 C (- ,0) U

(0,1/2). so that such a family exists only when 0 C {0} U [1/2,-). and the

... general form for the density parameterized in terms of 0 and a is unwieldy.

We have observed in many examples that the pseudo-likelihood and

quasi-likelihood methods lead to similar estimates, although sometimes

inferences for 0 are substantially different. In Section 2, we construct

an asymptotic theory for extended quasi-likelihood which allows an easy

illustration of the relationship between the two methods and suggests a

simple motivation for the form of extended quasi-likelihood. We show that

tha
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under certain conditions the two estimators are asymptotically equivalent.

although extended quasi-likelihood can be affected by an asymptotic bias

while pseudo-likelihood is not when the underlying distribution is

asymmetric. In Section 3 we discuss inference for 0 based on the two

approaches. From the theory of Section 2 we observe that while inference

based on asymptotic theory for the two approaches may yield similar results

under some conditions, such a test based on extended quasi-likelihood can

be adversely affected by possible asymptotic bias of the estimator, a

problem not shared by pseudo-likelihood tests.

2. SOME ASYMYrUTIC RESULTS

Neither pseudo-likelihood nor extended quasi-likelihood are exact

likelihood approaches. Pseudo-likelihood is based on the method of

moments, so that the estimating equations are unbiased and hence

. consistency and asymptotic normality obtain under very general conditions

-.'-even without the assumption of normality. Let v(pi zi.O) = log g(Oi z 1 O),

V{(pizi,O) be its column vector of partial derivatives with respect to 8,

zi = Ve(iizi,) - N-IT vIeL0.z .0 ) , and f(p,e) be the limiting

covariance matrix of the vO . Let subscripts denote differentiation with

respect to the argument, e.g., ,(;i,z.O) = fgt(wiz,,8)/oi. Define the

errors f i = (yi-Pi)/{a g(ji 1 ,zi,6)}. and assume the {e} are independent

with skewness l and r K = 0 for normality. Let 'v = (n.8 t)

and use subscripts PL and QL to denote pseudo-likelihood and extended

quasi-likelihood, respectively.
-I.'

04l
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a - . Then PL is asymptotically normally distributedand PL ). O Thenstrisbastpo

with mean 0. If a - 0 simultaneously with N -* c, then

N1/2 0) {2ff(ji.e)}_l N_1/2 N 2 +
i=l

(2.1)

If the {ei.} are identically distributed with kurtosis K. the covariance

matrix of the asymptotic distribution of 0PL is given by

(2 + K) [4N f(W.0)} -I. (2.2)

The assumption a - 0 is a useful simplification technically and is

relevant in applications where a is "small" relative to the means as in

radioimmunoassay, see Carroll. Davidian & Smith (unpublished). In the

gamma and lognormal distributions, a is the coefficient of variation, which

is often fairly small. Alternatively, think of yi as the mean of m
g2(, zi -1/2

observations with mean W and variance g (Z8), equate a and m ,and

let m -. m.

The assumption a -* 0 yields a motivation for (1.4). Since the goal of

' extended quasi-likelihood is to describe a class of distributions "nearly"

containing exponential families, consider a density h such that

log h(y,aO.a) = {ya - b(a)}/d2 + c(y.9 a) (2.3)
V,."

for some b, c, and a = a(p,O). To satisfy (1.1) we require 8b(a)/Oa =

04
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and 82b(a)/&z g (.z,), implying that p = {Ob(a)/ojA} OWOa and

g g2 (,z.) = oW 18a. This yields, writing b now as a function of p.

a = J (1/g2 (u,z,O)} du; b( = f {u/g 2(u,z,O)} du.

Plugging into (2.3) gives after simplification

log h(y,a.) - (2a 2) 1 D(y.z,0) + d(y.O.a) (2.4)

for some function d. For h to be a density we must choose d so that h

integrates to one; by approximating the first term on the right side of

".. (2.4) when a is small we may approximate d. Since when a is small we have

"2 D(ypz) z (y-u) 2/{a 2g 2 (yz, ))) d : -(1/2) log{2T 2g 2(yzO).

Inserting this in (2.4) yields the summand of (1.4).

The fact that (1.4) is an approximate log-likelihood implies that 0

need not be consistent. With the suggested adjustment c = 1/6 as in Nelder

& Pregibon (1987), if the {y1 } are dist. 'ted as Poisson with means (p

taking on values I and 4 in equal proportions, the theory of N-estimation

as in Huber (1961 p. 130-132) implies that 0QL converges to 0.675: if the

{ i take values 1 and 5. 6QL converges to 0 640 If the {J.L) take on

larger values, such as .30, 40 and 5.0 in equal proportions, however, 0

converges to 0.500.

Since the estimating equation for the extended quasi-likelihood

estimate 6 can be biased, standard asymptotic theory for 0 while
QL QL'

possible to construct. Is not fully informative. As an approximation we

use the small a assumption to construct an asymptotic theory. We also

describe an approach suggested by the Poisson case for "large" {Ji).

Nw
,mpJ

.-.........
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RESULT 2. Suppose that N11 (- i 0 O(1) and N' 2 1 Qr)/= 0 (1)
.' .. 1/2

if N a -X > Oas N-+-, a-0O. Then

1/2 - -1 -1/2 N 2
N2 0 ) (6.2 (p.O)- NI Cei - 1 (Pi,ZiU)

-a- i=l
+ (N1/ 2a) {6 f(ji,O)} -  + Opel), where (2.5)

NN

..CN  N 2 1igi'zi,) v0'ziO) - 2 gCji,z,,) wO(iziO)}.

A sketch of the proof is contained in the Appendix. The implication of

(2.5) is that while P and 0 behave similarly, they differ in an
PL QL

asymptotic fashion through the second term on the right hand side of (2.5)
0,

in a way that might affect asymptotic inference. For example, if the (ei}

are identically distributed with skewness C and kurtosis x, then 9 is
QL

asymptotically normal with covariance (2.2) and mean

1/2 -1
0 + {6N f(pO)} -XI C }, where CN - C.

From (2.5), 6QL and 6PL will be asymptotically equivalent only if X = 0 or

-. 0: the latter will occur for symmetrically distributed data.

In the case of (1.2). ve.i,,zi,.)= log W, so that

N-1 N 0-1 -""CN N " I i {1 20 (log 1i  I 1N)}, ]'N =  log pi,.

I=1 J=l

For the normal distribution, = i = 0; for the gamma, lognormal, and
o~2

inverse Gaussian distributions = oc) and Ki = O(c), so that the

asymptotic bias is 0 and the two estimators are asymptotically equivalent

with covariance the same as if the data were normally distributed with men

%'a,

oai

04.' .''" '"""..." . "*." "-" '',""" . " .'""" "." . " '" " "'I Z"",.''t''"€ , e
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2 20
j.and variance a W From Bar-Lev &Enis (1986). O (a) for

distributions which are exponential families with 0 E {} U [1/2.,-). If

the {yi} are not from an exponential family, the asymptotic bias need not

be zero. For example, consider a shifted gamma model yi = A i +

ag(it.izi .).,, where w. has a gamma (cipo) distribution with E(wi)
""~ ' 1n .- ,2-/2 2
a.Ao V and 6.2- 

= {wi - (ai/ip.)} (a1/ip) , so that E(e1 ) = 1. In this

case = 2 a.1/2 . so that if the (ai} do not depend on a. the asymptotic

bias will not vanish.

An asymptotic theory for which the means are "large" in which a

remains fixed yields a similar result under (1.2) if 6 < 1. Let ,u0.N be a

sequence to be chosen shortly. Define p* = A and y = yiO,N so(O-l) If / a N - omii / O.

that = - )/(b ) where 6 = a O . If as N in. m

and wO,N in such a way that the {p) and the {y} are well-behaved,

then if 6 < 1, 6 -* 0 as N -. so that the calculations here parallel those

for the case of small a. By analogy, the small a part of Result 1 holds.

Replacing a by 6 in (2.5), in the Poisson case for which 9 = .5 and c = 1.
"" "-1/2 -1

"i2i and K. = ji)' so that CN -+ 0 and the limiting covariance of 0QL

is as if Ki = 0. Thus, in the case of "large" means and data distributed

as Poisson. extended quasi-likelihood and pseudo-likelihood will behave

similarly.

3. INFEREWI FOR 0

,... The asymptotic distribution theory of Section 2 can be used to

construct tests of H0 : 6 = 0. For simplicity consider identically
0 "-'

distributed (e1) with kurtosis K. From (1.3), 6PL maximizes ePL(P3.,.),

where

%% %

* .---.. . .

.......................... ....... ,. . ..
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N
epL(0,e) = -N log apL( .) - 1 log g{i(3),zi0),

N
OPL(, O) I ((Yi f(xiCM /g {li(p)-z0.

v ".-i=1

One might reasonably base inference for 0 on a test statistic

-2 [R- ep{3(p)0}].
T N [ePL{1 (%OO} PL(PL)'PL1

" - where (6) denotes a generalized least squares estimate computed at 0.

-. Result 1 may be used to show that under HO. (2/(2+K)} T. is asymptotically

2
distributed as r so that a test based on this statistic with K

0r
appropriately estimated is an asymptotic a-level test. McCullagh &

Pregibon (1987) consider estimators for the cumulants for linear regression

mode 1s.

Nelder & Pregibon (1987) suggest a likelihood ratio type test based on

treating the extended quasi-likelihood as an actual likelihood. Such a

test is based on

,.QN = -2 [e* f(o).0}- e L{(^ ).A ]
= 2i iiiL1 QJQ QL QL'QL

where

A N
e (QL(P.) = -N log aQL (P) - I log g(yi,zi,).

i=l

2 -l N
a0(3.60) = N .1 D~y.i(1)z}

CQL i=1

'p' In the situation of Result 2. under H0 {2/(2+r-)} QN is asymptotically

distributed as noncentral with noncentrality parameter A =
r

X .Ct-(A-,) -C {9(2+K)) As long as A = 0. comparing this statistic to

044

*-., ,.

nt , %



vv w. v n vryrr,.. -L . .* , , -*. ,, . 9. .It t , W ,S 9.- .- -v -. y I .a .- w .. .. .. - . - r -" 7 r' ,'o.-.---.-- . . .--.......

- 10-

%°.% 2the percentiles of the r distribution is an asymptotic a-level test which

is asymptotically equivalent to the test based on T Nelder & Pregibon
-- 2

suggest comparing QN directly to the percentiles of the )r distribution.

, not accounting for the factor 2/(2+K). In the saddlepoint approximation

approach, m -. implies K_ -+ 0, thus they observe that if the underlying

distribution of the data is known to be from an exponential family, then

such a test is asymptotically valid. In our asymptotics, for the cases of

the normal, Poisson, gamma, and inverse Gaussian examples cited in Section

2 we see this to be the case. We further obtain the correct form and

properties for a test of this type when only the mean-variance relationship

is specified.

For a model such as (1.1) for which only the mean and variance are

specified, interest in 0 may be in the context of trying to understand the

structure of the variances, not the form of the underlying distribution. A

test based on QN will approach its nominal level only if A = 0. Thus, when

the underlying distribution of the data is such that 8 is biased
QL

asymptotically so that A A 0. in the case of a nonsymmetric error

distribution for example, the validity of a x2 test based on QN may be

seriously affected in that there will be bias in the asymptotic levels of

the test.
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APPENDIX SKETCH OF PROOF OF RESULT 2

For convenience, let T1 = log a and let (0,0.rl) be the joint extended

quasi-likelihood estimators for (13,6,r9. Let T(i,1,O) = (I ,V(i z'1W

p(i,/3,0) = f (xi,).)/g{/i(J3),zi,9}, BN = -4N-1 . T(i,3,O) T(i,,0)t ,  JN

2N .6 p(i,3.0) r(i.0,O) t and GN= N IN p(i.. p(i.f.O) t
. From (1.4).

(,6.n) solves

=Ql. 
N-A0 7

= A A . where (A.1)

o; NN- ~1/2) N.2 e2 (

.' N i=Ie (Yi - ii) p(i'P'O)/g(Pi.zi'O);

-1/2 N --
Q2,= N-N/2 7 { e D(Yi.w,.z.) 1);' i=l

N

Q3,N ( O 'n ) = N 1 /2  2 1 -277 aD(Y ,I1 .z )/Oe - (Olog g(Yi.zi,O)/o}].
' i=l

The following result is shown by assuming appropriate smoothness conditions

3 .for g so that D may be differentiated.

LEMMA A. Under regularity conditions,

N N

1 . 2 I 2 3 1N 3 4N =I ,D(YAi az) - N e +a N . s 6i + 0(a;

'p=

04
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N"-N 2- aD(Yi,,i. zi)/aO -2 { a N -  6 V(i.3.0)
i= i=l

+a 3 N-1N 3 4+. ae 2 1 i ) + 0 :(

i=l s i

1  2 a2D(Yiwi.z.)/OOOt 2 a 2 N 1 N 2i,,

N .DY P z)IE~O' aN-2 6. [3 voiPE)vt(i1 3 E))i=l 11 =1 1 e

3
/ g(.li.zi.O)} ] + O )

where goo(pi,zi,O) = 2 {g(WilzVG)}/Oo .stS. = -2 gP (i.,z.,@)/3, and

S 2 .1  9(i z'z0)/3 - v,(,iiziE') gA (Pi' z. ' ).

* A Taylor series in (A.1) using consistency, a Taylor series in a about

0 using Lemma A and laws of large numbers yield after simplification

GN N 1/2 ( 3
N

1

0-0

(A.2)

111/2

+(N a) +o(1).

-/2 2 1 3.
N..1 i=l 1

t t
where S (S,,,. i) Equation (A.2) implies that, as N - c a -0,

J..

... 'Y ,j%..-..
;--* -.
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BN N1/ 2  - 1 12 N 21 2  (K-~ N (-1) T(iP.O)-: e

..'.-. (1/2 N-1 N 3
or) 2 N 2 6 . . + 0 p(1)

i=1

Algebra and simple probability limit calculations yield the result.

Equation (A.2) also shows that in these asymptotics PQL is equivalent to a

generalized least squares estimator for 3. D
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